16 research outputs found

    What can we learn from noncoding regions of similarity between genomes?

    Get PDF
    BACKGROUND: In addition to known protein-coding genes, large amounts of apparently non-coding sequence are conserved between the human and mouse genomes. It seems reasonable to assume that these conserved regions are more likely to contain functional elements than less-conserved portions of the genome. METHODS: Here we used a motif-oriented machine learning method based on the Relevance Vector Machine algorithm to extract the strongest signal from a set of non-coding conserved sequences. RESULTS: We successfully fitted models to reflect the non-coding sequences, and showed that the results were quite consistent for repeated training runs. Using the learned models to scan genomic sequence, we found that they often made predictions close to the start of annotated genes. We compared this method with other published promoter-prediction systems, and showed that the set of promoters which are detected by this method is substantially similar to that detected by existing methods. CONCLUSIONS: The results presented here indicate that the promoter signal is the strongest single motif-based signal in the non-coding functional fraction of the genome. They also lend support to the belief that there exists a substantial subset of promoter regions which share several common features including, but not restricted to, a relative abundance of CpG dinucleotides. This subset is detectable by a variety of distinct computational methods

    A machine learning strategy to identify candidate binding sites in human protein-coding sequence

    Get PDF
    BACKGROUND: The splicing of RNA transcripts is thought to be partly promoted and regulated by sequences embedded within exons. Known sequences include binding sites for SR proteins, which are thought to mediate interactions between splicing factors bound to the 5' and 3' splice sites. It would be useful to identify further candidate sequences, however identifying them computationally is hard since exon sequences are also constrained by their functional role in coding for proteins. RESULTS: This strategy identified a collection of motifs including several previously reported splice enhancer elements. Although only trained on coding exons, the model discriminates both coding and non-coding exons from intragenic sequence. CONCLUSION: We have trained a computational model able to detect signals in coding exons which seem to be orthogonal to the sequences' primary function of coding for proteins. We believe that many of the motifs detected here represent binding sites for both previously unrecognized proteins which influence RNA splicing as well as other regulatory elements

    NestedMICA as an ab initio protein motif discovery tool.

    Get PDF
    BACKGROUND: Discovering overrepresented patterns in amino acid sequences is an important step in protein functional element identification. We adapted and extended NestedMICA, an ab initio motif finder originally developed for finding transcription binding site motifs, to find short protein signals, and compared its performance with another popular protein motif finder, MEME. NestedMICA, an open source protein motif discovery tool written in Java, is driven by a Monte Carlo technique called Nested Sampling. It uses multi-class sequence background models to represent different "uninteresting" parts of sequences that do not contain motifs of interest. In order to assess NestedMICA as a protein motif finder, we have tested it on synthetic datasets produced by spiking instances of known motifs into a randomly selected set of protein sequences. NestedMICA was also tested using a biologically-authentic test set, where we evaluated its performance with respect to varying sequence length. RESULTS: Generally NestedMICA recovered most of the short (3-9 amino acid long) test protein motifs spiked into a test set of sequences at different frequencies. We showed that it can be used to find multiple motifs at the same time, too. In all the assessment experiments we carried out, its overall motif discovery performance was better than that of MEME. CONCLUSION: NestedMICA proved itself to be a robust and sensitive ab initio protein motif finder, even for relatively short motifs that exist in only a small fraction of sequences. AVAILABILITY: NestedMICA is available under the Lesser GPL open-source license from: http://www.sanger.ac.uk/Software/analysis/nmica/RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Metamotifs--a generative model for building families of nucleotide position weight matrices.

    Get PDF
    BACKGROUND: Development of high-throughput methods for measuring DNA interactions of transcription factors together with computational advances in short motif inference algorithms is expanding our understanding of transcription factor binding site motifs. The consequential growth of sequence motif data sets makes it important to systematically group and categorise regulatory motifs. It has been shown that there are familial tendencies in DNA sequence motifs that are predictive of the family of factors that binds them. Further development of methods that detect and describe familial motif trends has the potential to help in measuring the similarity of novel computational motif predictions to previously known data and sensitively detecting regulatory motifs similar to previously known ones from novel sequence. RESULTS: We propose a probabilistic model for position weight matrix (PWM) sequence motif families. The model, which we call the 'metamotif' describes recurring familial patterns in a set of motifs. The metamotif framework models variation within a family of sequence motifs. It allows for simultaneous estimation of a series of independent metamotifs from input position weight matrix (PWM) motif data and does not assume that all input motif columns contribute to a familial pattern. We describe an algorithm for inferring metamotifs from weight matrix data. We then demonstrate the use of the model in two practical tasks: in the Bayesian NestedMICA model inference algorithm as a PWM prior to enhance motif inference sensitivity, and in a motif classification task where motifs are labelled according to their interacting DNA binding domain. CONCLUSIONS: We show that metamotifs can be used as PWM priors in the NestedMICA motif inference algorithm to dramatically increase the sensitivity to infer motifs. Metamotifs were also successfully applied to a motif classification problem where sequence motif features were used to predict the family of protein DNA binding domains that would interact with it. The metamotif based classifier is shown to compare favourably to previous related methods. The metamotif has great potential for further use in machine learning tasks related to especially de novo computational sequence motif inference. The metamotif methods presented have been incorporated into the NestedMICA suite.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    iMotifs: an integrated sequence motif visualization and analysis environment.

    Get PDF
    MOTIVATION: Short sequence motifs are an important class of models in molecular biology, used most commonly for describing transcription factor binding site specificity patterns. High-throughput methods have been recently developed for detecting regulatory factor binding sites in vivo and in vitro and consequently high-quality binding site motif data are becoming available for increasing number of organisms and regulatory factors. Development of intuitive tools for the study of sequence motifs is therefore important. iMotifs is a graphical motif analysis environment that allows visualization of annotated sequence motifs and scored motif hits in sequences. It also offers motif inference with the sensitive NestedMICA algorithm, as well as overrepresentation and pairwise motif matching capabilities. All of the analysis functionality is provided without the need to convert between file formats or learn different command line interfaces. The application includes a bundled and graphically integrated version of the NestedMICA motif inference suite that has no outside dependencies. Problems associated with local deployment of software are therefore avoided. AVAILABILITY: iMotifs is licensed with the GNU Lesser General Public License v2.0 (LGPL 2.0). The software and its source is available at http://wiki.github.com/mz2/imotifs and can be run on Mac OS X Leopard (Intel/PowerPC). We also provide a cross-platform (Linux, OS X, Windows) LGPL 2.0 licensed library libxms for the Perl, Ruby, R and Objective-C programming languages for input and output of XMS formatted annotated sequence motif set files. CONTACT: [email protected]; [email protected]

    Integrating sequence and structural biology with DAS.

    Get PDF
    BACKGROUND: The Distributed Annotation System (DAS) is a network protocol for exchanging biological data. It is frequently used to share annotations of genomes and protein sequence. RESULTS: Here we present several extensions to the current DAS 1.5 protocol. These provide new commands to share alignments, three dimensional molecular structure data, add the possibility for registration and discovery of DAS servers, and provide a convention how to provide different types of data plots. We present examples of web sites and applications that use the new extensions. We operate a public registry of DAS sources, which now includes entries for more than 250 distinct sources. CONCLUSION: Our DAS extensions are essential for the management of the growing number of services and exchange of diverse biological data sets. In addition the extensions allow new types of applications to be developed and scientific questions to be addressed. The registry of DAS sources is available at http://www.dasregistry.org.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Developing and implementing an institute-wide data sharing policy

    Get PDF
    The Wellcome Trust Sanger Institute has a strong reputation for prepublication data sharing as a result of its policy of rapid release of genome sequence data and particularly through its contribution to the Human Genome Project. The practicalities of broad data sharing remain largely uncharted, especially to cover the wide range of data types currently produced by genomic studies and to adequately address ethical issues. This paper describes the processes and challenges involved in implementing a data sharing policy on an institute-wide scale. This includes questions of governance, practical aspects of applying principles to diverse experimental contexts, building enabling systems and infrastructure, incentives and collaborative issues
    corecore